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Incremental Diffraction Coefficients for Planar Surfaces, Part I1:
Calculation of the Nonuniform Current Correction to PO

Reflector Antenna Patterns

1. INTRODUCTION

Numerous computer codes exist for calculating the far fields of reflector antennas by integrating
either the physical optics (PO) current or the aperture fields obtained from geometrical optics (GO). 1,2

Both the PO current integration and the GO aperture-field integration produce far fields with reasonable
and comparable accuracyf out to a sidelobe angle that depends upon whether the edges of the reflector

are sharp, flared, absorber-lined, serrated, etc. 3 In particular, for antennas with locally wedge-shaped

conducting edges, both PO current and CO aperture-field integration predict nearly the correct copolar

fields out to 200 or more. 4 However, even for perfectly conducting reflectors with wedge-shaped edges,

the PO current or GO aperture-field integrations neglect the nonuniform currents5 or fields6 near the
edges and thus fail to produce reliable cross-polarized fields, far-out sidelobes of the copolarized fields

and fields near nulls.7 Thus a number of techniques have been used to improve the accuracy of PO

current and GO aperture-field integrations.

The geometrical theory of diffraction 8 (GTD) or the physical theory of diffraction5 (PTD) can be

used to calculate more accurately the far-out sidelobes of reflectors. However, GTD introduces the

problem of matching smoothly the far-out sidelobes to the near-in sidelobes, and both PTD and GTD,
when applied directly to obtain the far-fields, fail (for a gcneral illumination) to produce accurate co-

and cross-polarized fields in the mainbeam region (which is a focal region for the GTD and PTD
diffraction coefficients). Morcover, if conventional GTD or PTD is used to first calculate fields on a

near-field surface before performing an aperture-field integration to obtain the far fields, 7.9 one is still

(Received for publication 27 October 1987)

tThe accuracy of the PO current and GO aperture-field integrations is comparable, provided the aperture surface
used in the field integration caps the reflector.3
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faced with the problem of computing accurate near fields in the focal regions. Also, conventional GTD or
PTD is not well suited for computing end-point contributions such as from corners, even if higher order

distortions of the current near the end-points are neglected.
To overcome this problem of computing fields in caustic and end-point regions, Mitzner l °

introduced PTD "incremental length diffraction coefficients," which, when multiplied by the incident
field, could be integrated along the rims of reflectors (for example) to obtain the diffracted fields of the
nonuniform current for arbitrary angles of incidence and scattering. Mitzner obtained explicit expressions
for the incremental diffraction coefficients of the perfectly conducting wedge. More recently, Michaeli,11

unaware of Mitzner's report, derived expressions for the GTD incremental diffraction coefficients of the
wedge, and Knott1 2 has shown that if the PTD incremental diffraction coefficients for the wedge are

subtracted from the GTD coefficients, the result is the PO incremental diffraction coefficients. (The

concept of incremental diffraction coefficients was used implicitly in work that preceded that of
Mitzner,10 notably that of Ufimtsev, 5 Braunbek, 6 Millar, 13- 15 and the "equivalent (edge) current" work of
Ryan and Peters. 16 However, this previous work used approximate ad hoc expressions for the incremen-

tal fields that did not necessarily agree with the diffracted fields outside the focal regions.)

Part 117 of this work reviews more thoroughly the key references leading to GTD and PTD
incremental diffraction coefficients, and provides a general and convenient method for determining
incremental length diffraction coefficients directly from the conventional two-dimensional diffraction

coefficients. The main purpose of this sequel (Part II) is to provide the detailed analysis of how the PTD
incremental diffraction coefficients for the half-plane are integrated around the rims of reflectors to

obtain the far fields produced by the nonuniform currents. These computed far fields of the nonuniform
current are added to the far fields computed from the PO current. Excellent agreement with the far

fields obtained from a method of moments solution to the electric field integral equation applied to a
20-wavelength-diameter reflector with an 8-wavelength focal length7 20 shows that indeed the cross-
polarization, further-out sidelobes, and fields near nulls of reflector antennas can be appreciably changed
by the fields of the nonuniform currents.

Finally, we evaluate the fields of the nonuniform current of the reflector through conventional

asymptotic evaluation of the diffraction integrals and compare these approximate resuults with the far
fields obtained by numerically integrating the nonuniform incremental diffraction coefficients.

2. ANALYSIS

We wish to improve upon the PO approximation to the far field of a parabolic reflector antenna by

taking into account the fact that, in the close vicinity of the rim of the reflector, the PO current does not
accurately represent the total current excited on the reflector surface. The total current on the reflector

surface, K, can be represented as the sum of the PO current, ,PO, and the nonuniform current, knu,
which is prominent only near the reflector rim and which decays rapidly away from the rim. Correspond-

ing to the representation of the total current as

k roK~ + Rnu

is the representation of the total electric far field scattered by the reflector, Es, as the sum of the PO far

field, PO, and the far field of the nonuniform current, Enu; that is,

2



s = Po + Knu (1)

with the far field given in terms of surface integrals of the respective currents. The far-field contribution of

the nonuniform current can be found by subdividing the rim into differential lengths, determining the far

field of each such differential length, and integrating this far field over the rim of the reflector.

The far field of a differential length (the incremental diffraction coefficient) can often be well

approximated by the corresponding far field of a canonical scatterer that conforms to the reflector at the

rim and that is excited by a plane wave whose propagation vector is in the direction from the feed to the

rim element and whose amplitude and phase at the point of incidence are those of the feed radiation. In

general, the rim of the reflector may not conform to a canonical scatterer with a known incremental

diffraction coefficient. However, the rims of many reflectors are well approximated locally by perfectly

conducting wedges. Incremental diffraction coefficients for the perfectly conducting wedge have been

derived by Mitzner 10 for the nonuniform current, Michaeli1 1 for the total current, and Knott 12 for the PO

current. (Since the total current is the sum of the PO and nonuniform currents, any two of the coefficients

determine the third.) For simplicity here, we will consider the special, though important, case of a

parabolic reflector whose rim can be modeled locally by an infinitesimally thin, perfectly conducting

half-plane. The correction, Enu, to the PO reflector far field is thus obtained '-y integrating the nonuniform

current incremental diffraction coefficient for the half-plane around the reflector rim.

2.1 Incremental Diffraction Coefficients for the Nonuniform Current of the Half-Plane

The half-plane nonuniform current incremental diffraction coefficient, dEnu (r), is given by

d-E nU (y) = dEs (r) - dPO (F) (2)

where dE, (Y) and aiE PO (1) are the half-plane incremental diffraction coefficients for the total current and

PO current respectively, and i is the vector from the rim point to the far field point. Expressions for dEs (0

and dE "'0 (I) for the perfectly conducting wedge were derived in Part I and shown to agree with Michaeli

and Knott (and thus indirectly with Mitzner) as a check on our general method for obtaining incremental

diffraction coefficients. (The total incremental diffraction coefficients for a perfectly conducting half-plane

were also derived directly in Part I.) Specifically, the half-plane incremental diffraction coefficients may be

expressed as follows:

4 sin a sin 0(3
d-TM 'E1 . elkr sin 0 2

s 4'rrr sin 200  cos a+cos (0

a-- PO(TM) (f) - dz' sign(r, - 4 '0)Ej, 4er sin 2 sin os0 (4)
~ ~ 0 E1 4~,rr sin2 0( OS c a+COS 41o

'TE- y Ha es cos 4-O O ,
dEE(?)ra. --dz'Zo 2 2 1

sin O0 41rr cos t+cos 4o sin a

[sin - (cos 4 cos 0 + cos a sin 0 cot 00) 61 (5)
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and

a-EP(rE) (f) r-o -dz' sign(ir - 0)) Zo sn e 4rr 2 2

sin 00 4irrr cos ot +cos 4)0

[sin 4), - (cos 4 cos 0 - cos 4)0 sin 0 cot 00) ]  (6)

where 0 < 4) -< 21T and

= Cos-I (sin 0 Co 4). (7)a sin 00co

In these expressions, OTEM () and dE(m)(r) are the incremental diffraction coefficients for the total

and PO currents, respectively, for a half-plane illuminated by a TM (E.polarized) plane wave, and d-ETE()

and d-°('TE)(F are the corresponding diffraction coefficients for TE (H-polarized) plane-wave illumina-

tion. The half-plane is defined in terms of Cartesian coordinates (x,y,z) by the equations y = 0, x > 0,

so that the edge of the half-plane coincides with the z-axis. The origin of the coordinate system is taken

to be at the differential element (incremental length) dz' of the half-plane edge. The directions of the

incident plane wave and the point of observation are given by the spherical coordinate angles (0 0, 4)0)

and (0, 4)), respectively (see Figure 1). Eiz and Hiz are the complex amplitudes of the electric and mag-

netic components, respectively, of the illuminating plane waves parallel to the edge of the half-plane at

the origin, Z0 is the free-space impedance, and r = 1?I, the distance from the origin to the field point.

OBSERVATION OBSERVATION
y DIRECTION z DIRECTION

INCIDENT

EDGE OF / PLANE WAVE
INCIDENT HALF-PLANE

PLANE WAVE

(b0

0x

HALF-PLANE

Figure 1. Geometry of a Hfalf-Plane Illuminated by a Plane Wave
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The half-plane incremental diffraction coefficient for the nonuniform current and TM plane-wave

illumination is obtained by substituting Eq. (3) and Eq. (4) into Eq. (2) and using elementary trigono-

metric identities to simplify the resulting expression to

ekr sin 0 2 sin '0

-nurm) (t) r- dz' Eiz. *jkr sin2 0 o (8)
cos I +sin 2

Similarly, the half-plane incremental diffraction coefficient for the nonuniform current and TE plane-wave

illumination is found, by substituting Eq. (5) and Eq. (6) into Eq. (2) and simplifying trigonometrically,

to be

dE nu(T E
) (f) r- .F- dz' sign(rr - 4)o)Zo H. e r I

sin-#1o+sin

sinin40$[cos)cosin + o + sin

Isin Cos4) os + I +2I1cos--I sin.) sin 0cot 00]O} (9)

For arbitrarily polarized plane-wave illumination, the half-plane nonuniform incremental diffraction

coefficient is then obtained by summing Eq. (8) and Eq. (9):

aiEfu Qt) ,--dzt eikrt 1
dr sin 0oe I cos (01 sn

2co 22sinO - +sin

2 sin Oe sn0e
sin0sin -

+ sign(irr - 4 oe) Zo cos 4t cos O + I + 2lcos t sin 2 sin Oe cot oe) le
sina2 2

- sign (xr - +0o)Zo sin +e t (10)
sin- 2

with

a -cos- (sin Ot 1))
sin 00t cospe1
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We have inserted the subscripts "e" in Eq. (10) and Eq. (11), indicating that the subscripts are defined

with reference to a local coordinate system with origin at the incremental length, to clearly distinguish

these locally defined quantities from those defined with reference to the global coordinate system of the

reflector antenna introduced in the next subsection.

2.2 Transformation to the Global Coordinate System of the Reflector

The correction to the PO electric far field of the reflector antenna is obtained as indicated above by
integrating Eq. (10) around the rim of the reflector. Since all quantities in Eq. (10) are defined with respect
to a local coordinate system with origin at the differential element of the reflector rim, it is first necessary to
transform Eq. (10) to a global coordinate system which we will take here to be that shown in Figure 2.

The origin of the global coordinate system is the focus of the parabolic reflector of focal length F and

diameter D, and the z-axis is the axis of the reflector directed towards the center of the reflector. Primed

coordinates are used to indicate integration points on the reflector rim, and unprimed coordinates to
indicate the field points. It is also necessary to define the local coordinate system with origin at the point

of integration on the reflector rim. Since we are modelling the rim locally by the half-plane defined as

Aperture plane

/ - - - -

ID/2

Figure 2. Global Coordinate System for Paraboloidal Reflector
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shown in Figure 1 (the incident plane wave in Figure 1 corresponds to the ray from the feed at the focus

to the rim point), we want the local x-axis to be tangent to the reflector at the rim, normal to the rim, and

directed inward from the rim; and the local y-axis to be the inwardly directed normal to the paraboloid at

the rini. Thus

ke = -sin 0'i?' - cos 0 ' (12)
2 2

and

yte= -cos -r + sine, (13)
2 2

with 0', the angle at the focus subtended by points on the rim, given by

2D = 2cot- 14F (14)

Hence

le ie x = - .(15)

We now systematically express the locally defined quantities of Eq. (10) and Eq. (11) in the global
coordinate system. Starting with e0e, the angle between the local unit z-vector, -4', and the ray -' from

the rim point to the feed at the focus, it is apparent that 60t = rr/2 so that

cos 00e = 0 (16a)

and

sin 0  = 1 . (1 6b)

Next, since 4)ot is the angle between ie and the projection of - ' on the xe ye -plane (see Figure 2), we have

cos 4 Ot = - ' • /sin Boe = sin 0' (17a)

and

7



sin 4)bo = -' /sin Ooe = cos (17b)

from which
1 sn- 1/ 2

cos e = 2 (18a)

and

O )1/2

sin 42ne (18b)

Proceeding to Oe, the angle between zc and the ray from the rim point to the far-field point,

cos 0e = - $' -

But fe, the unit vector from the rim point to the far-field point, is parallel to A, the unit vector from the
focus to the far field point. Hence

Cos Oe = - $'A

= (sin (b' i - cos (b' ,) (sin 0 cos 4)i + sin 0 sin 4), + cos 02)

= sin 0 sin ( 0' - () (19a)

and

sin Of = [1 - sin 2 0 sin 2 (4' - (d)1 1 2  (19b)

where the positive root must be taken since 0 5 Oe < Tr. (For 0 = r/2, sin Oe = lcos((b' - (b)l.)
The cosine and sine of +) are given by

cos 4)e = fe it/sin 0e

and

sin 4)t = 'e /sin Oe.

8



Again, replacing fe by 1 and then switching to Cartesian components and simplifying trigonometrically,

we obtain

Cosoe - cos- - sin0 cos(do' - do) + sin - cos 01inet (20a)

and

sin +fe = -sin - sin 0 cos(4)' - 4)) - cos -E cos 0]sin Of (20b)

with sin 01 given by Eq. (19b). The angle a given by Eq. (11) is now also expressed in the global

coordinate system since sin 00e, sin 0, and cos 4)e are given by Eq. (16b), Eq. (19b), and Eq. (20a),

respectively. In particular,

sin 1-cos a1 /  (21)
2 \ 2

with

cos a = sin 0 cos +e .

The unit vector 0e is transformed to the global coordinate system by starting with

6t = cos Otcos +fe i + cos Ofsin +ete - sin Of 2e ,

substituting global Cartesian component expressions for it, 't, and 2 , and simplifying trigonometrically,

thereby obtaining

Ot - os Oecos +' os- - cos +)t + sin - sin +e + sin Oesin +']:[c (c 0 2, 2
- [cos Oesin +)' Cos -L cos 40t + sin L sin 40e - sin Oecos .'

Cos Of os L sin +e - sin cos o t (22)

with cos Of, sin 0, cos +)e, and sin 4e given by Eq. (19a), Eq. (19b), Eq. (20a), and Eq. (20b) respec-

tively. A similar procedure gives

9



= cos ' o (Cs -L sin sin cos 4t)*

+ sin +' (Cos L sin sin Lcos

Ssin L sin +t + cos cos *e (23)

Next, proceeding to e"kre/r and replacing re by r (see Figure 2),

!'" = e--" r-',, R (24)

rf r R (4

where R is the distance from the reflector focus to the far-field oint. It is then simple to find that

t' A = r' [sin 0' sin 0 cos(4' - *) + cos 0' cos 0] (25)

where

r' 2F = F sec2(- ) (26)T + Cos 0'2

and 0' is given by Eq. (14). The differential length dz is given by

dz' = -r' sin 0'd4' = -2F tan -L d4' (27)2

and, referring to Eq. (15), E&ze and Hig become

Eizt - E1 ,4  (28a)

and

He= -H, (28b)

in the global coordinate system. Substituting explicit expressions for cos 40t, sin 00t, re, dzj, E&e, and

Hize in Eq. (9), and noting from Eqs. (17a, b) that 0e and hence also oe/2 , lies in the first quadrant for

the reflector geometry we are considering, gives

10



dEnu (t) r-*! r' sin 9'd4'e - Ik 'R41rR ~ Cos 40t+ sin a

U 0eCO )C0 0 Isin 4et 1e (29)
Ej,, sn e sn o-(+Zt ,, cos 4*tos 0O t - ZoH,., sin t$e(9
E,2 sin 0e sin T+ ZoHi,' sin -L s 2 -

2 2

where expressions in global coordinates have been derived above for all locally subscripted quantities.

2.3 Incremental Transverse Far-Field Components

Before integrating with respect to 4 ', it is desirable to obtain explicit expressions for dEnu(k) and

dEnu(), since, when integrated, these will yield the 0- and do-components of the nonuniform current

electric far field (the radial component of the far field is, of course, zero). Thus, we let

= 6e B. ' = *4 .$ e 0, V (30)

Substituting Eq. (30) in Eq. (29) gives

dEnu ( ;) & r sin O'd4'e- 1 c1'R cos - + sin -

2 2
(,02sin Ot sin cos 4 ecos 0e siI .s (31)---ZH1 ' / - • H31)

• El€. 2 sin R sin .o9, y--ZH¢
2si 2

and

dE u (rf) r--P eikR r' sin O'd'e""k 1
cos - +sin -

2 2

* E1 ,' 2 sin 0t sin 2 + ZoHi,' cos 4(co5 e)T - ZoH in - v] . (32)
sin2 sin 2

To find a and T, we start with Eq. (22), which can be represented as

de = ak + b9 + c2

so that

r - a cos 0 cos 4 + b cos 0 sin - c sin e (33)

11



and

,T -asin 4) + bcos 4, (34)

Substituting explicit expressions for a, b, and c from Eq. (22) into Eq. (33) and Eq. (34), and making the
convenient change of variable

ui V4' (35)

(suggested by the 4) (04 dependence of cos Of, sin Of, cos +)e, sin 4)t, a, and' F -RI) so that

cus 4'=cus 4)cos u - sin 4)sin u (36a)

and

sin 4'=sin +) cos u + cos 4,sin u, (36b)

and substituting for cos Oe, sin OC, cos +)e, sin 4)e from Eqs. (19) and (20) leads to

or -cos 0sinu (7
(1- sin2 e sin2 u)! 2  (7

and

Cos u
(1- sin 2 0 sin 2 U) 1/2  (8

Similarly, by starting with Eq. (23) for $1, we obtain

Cos u
(1 -sin 2 0 sin 2 U) 1/2  (39)

12



and

V co 0 sin ul/ (40)

2.4 Feed Illumination

It is now necessary to specify the form of the feed illumination of the reflector. This is chosen to be

E= -,- [a(O')cos 406 + d(O')sin )] (41 a)

and

= !. [a(0')cos 4' -d(0')sin 4)'*] (41b)
Zor

so that the E-plane is the xz-plane and the H-plane is the yz-plane. For an x-directed electric dipole source

a(0') = cos 0', d(O') = - I , (42)

while for a Huygens source with an x-directed electric dipole and a y-directed magnetic dipole

a(9') = 1 + cos 0' , d(0') = (I + cos 0') . (43)

Thus

=IO e-, d(O')sin 4'= d(B')(sin 4) cos u + cos 4) sin u) (44a)rr

and

H =O a(0')cos 2T a(O')(cos 4) cos u - sin 4) sin u) ,(44b)

applying Eq. (35). Substituting Eq. (44a) and Eq. (44b) in Eq. (31) and Eq. (32) and replacing d+)' by du
gives

13



dEu (r) r-~Po-s- sin 0' du eik(r'- '&) 1
41rR ft -

2 2

2d O)sin Of sin 2O- (sin 4, cos u + Cos 4) sin u)cr

+ a(O') (Cos d6 Cos u -sin 4) sin u )(cos Of COS 4)e a - sin 4cj(45)

and

dEu®rr-P!LkRsin 0' du 1i~'f-'

2 2

*2d(O')sin Oftsin -1 (sin 4) cos u + COS 4) Sin U) T

a(0') (cos Cos u sna i I(cOefcos 4)e T - si o )(46)

2

2.5 Integration of the incremental Fields

While Eq. (45) and Eq. (46) can be integrated numerically as they stand, substantial simplification

as well as analytic clarification can be effected by eliminating those parts of the integrands that are odd
functions of u and hence vanish when integrated with respect to u from - iT to Tr. [ Note from Eq. (15)
that in order to obtain the proper sign of the far field components, the integration must be performed
in the negative u or negative 4)' direction, since this corresponds to integration in the positive zt
direction; see Eq. (15).] It is straightforward to show that all terms in dE"' (Yr) containing sin $) and all
terms in dE.u ?) containing cos 4) are odd fuinctions of u so that

Enu (R) r- Cos 4) in '-7 deik(r '-k) Io
8 sin 6'+din

Cos 2 2si

f2d(O')sin Of sin ±Oesin u or + a(O') Cos u (cos Of cos 4)e u -sin 4)e l.L)} (47)
2 ~ sin2

and

Enu (R) r-sin _gL _ Sin 0, duek4)t'
TR ZCos 00e +sin

2 2

F2d(0')sin Oe sin ±~osu SUT - a (0') sin u (COS Oe COS 4)e T - sin be ) (48)
2 sin
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Thus ENu(R) and Eu('R) vary as cos i and sin 4 respectively. If the co- and cross-polarized field components, Eco

and Ea, are defined according to Ludwig's third definition18

Ec= E9 cos 4) + E, sin 4), (49a)

and

E= Ee sin 4)- E, cos 4), (49b)

then there is no cross-polarized field in either the E- or H-planes.

3. CALCUlATIONS

In Section 3.1, we enhance the accuracy of the far field of the paraboloid reflector by numerically

integrating the nonuniform incremental diffraction coefficient around the rim of the reflector and adding

this correction or "nonuniform" field to the PO fields of the reflector. The E-plane, H-plane, and

45*-plane amplitude and phase patterns of a 20k diameter reflector with F/D = 0.4 are computed for

both electric-dipole and Huygens sources feeding the reflector. Plots of the PO far fields and the PO plus
nonuniform far fields are shown with and without the primary far fields of the feed included. Excellent
agreement is found with the patterns obtained from the method of moments (surface integral equation)
solution of Bach, Viskum and Frandsen. 7.20

In Section 3.2, we compare the amplitude and phase of the nonuniform far field calculated by
numerical integration of the nonuniform diffraction coefficient with that calculated by conventional
asymptotic evaluation of the diffraction integrals. Expected good agreement is seen except in the forward
and back caustic regions where the asymptotic expressions diverge to infinity.

3.1 Far Fields of a Thin Metal Paraboloid Reflector

The field of a paraboloid reflector was calculated by integrating the nonuniform current incremental
diffraction coefficient around the reflector rim and adding the result to the PO reflector field. The PO
field was obtained from the following formulation due to Rusch: 19

eli=t foo eikr'(l -cos 0 Cos e')
R= ikF cos 4, -I- 1+cos 0'

{a(0') cos 0 [Jo(p3) - J2(0)1 - d(0')cos 0 Uo(O) + J2(0)]

- 21a(O') sin 0 tan(L) J,(0)) sin O'dO' . (50)
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SikF sin 4 6 eikr'(1 - cos 0 cos 9)
E is f 1+ cos 0'

.{a(0') [Jo(p) + J2()] - d(0') Uo3() - J2(3)I} sin 0'd0' (51)

In these equations, R, 0 and 4, are the spherical polar coordinates of the field point; 0' is now a variable
instead of being fixed at the angle subtended by the reflector rim as in Section 2; 00 is the angle at the
focus between the z-axis and a ray from the focus to a point on the rim; a(0') and d(0') specify the feed
illumination [cf. Eqs. (41a,b)]; J0 and J2 are the Bessel functions of order 0 and 2, respectively; 3 = kr'

sin 0 sin 0'; and r' = 2F/(1 + cos 0').

To enable comparison with the calculations made by Bach and Viskum 7 ,20 using a moment method,
the reflector diameter and focal length were taken equal to 20 and 8 wavelengths, respectively, and two
different feeds located at thc reflector focus were used: a Hertzian x-directed electric dipole, and a
Huygens source with an x-directed electric dipole and a y-directed magnetic dipole. The co- and

cross-polarized field components, Eco and Ecr, were calculated from Eqs. (49a, b). In the results
presented below, the amplitude and phase are normalized to the amplitude and phase, respectively, of

the sum of the copolarized PO and nonuniform current field in the mainbeam direction of 0 = 180.
First, we show the results of calculations in which the primary feed field is added to the secondary

reflector field, as was done in the calculations of Bach and Viskum. Figures 3a, b, c show, respectively,
the dipole-feed antenna (co-polar) amplitude pattern for 0 from 1800 to 1550 in the E and H-planes
(recall that the cross-polar field is zero in these planes), and the cross-polar amplitude pattern in the

4) = 450 plane. Figures 4a, b, c show the corresponding phase patterns. Figures 5a, b, c show the same
dipole-feed antenna amplitude patterns for 0 from 180 to 00, and Figures 6a, b, c show the correspond-
ing phase patterns. Figures 7a, b, c through 1Oa, b, c show the corresponding amplitude and phase

patterns for the Huygens-feed antenna. In all these patterns, the dashed line is the PO plus feed field,
and the solid line is the sum of the PO, nonuniform current, and feed fields, so that the difference

between the two curves is a measure of the importance of the nonuniform current field correction to the

PO plus feed field.

Comparison of our total (PO plus nonuniform plus feed) field patterns with the corresponding
patterns obtained by Bach and Viskum using a moment method, shown in Reference 7 as well as in a
more detailed and complete set of curves, 20 shows very close agreement, in general, throughout. (Note

that in Bach and Viskum the main beam direction is given by 0 = 0*, and an exp(jwt) time dependence
is used, so that their phases are the negative of ours.) As an example we have reproduced in Figure 11
the cross-polar amplitude patterns in the 4b = 450 plane obtained by Bach and Viskum 20 for the
Huygens-feed reflector antenna. Comparing Figure 11 with Figure 7c it is seen that the levels of the

sidelobe peaks of our total field pattern agree closely with those of Bach and Viskum's method of
moments pattern. Our null depths are somewhat deeper than theirs, however. [This discrepancy in

cross-polar null depths for the Huygens source may bc caused by the limited dynamic range of the
method of moments program, 20 because the cross-polarized field in the 450 plane is the difference

between the E.- and H-plane fields see Eq. (49h), and the E- and H-plane fields for the Huygens source
are especially close in the forward region from 0' to 250 shown in Figures 7c and 11.1
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Figure lOc. 4 = 450 Cross-Polar Phase Pattern of 20X Huygens-Feed Paraboloid Antenna With Primary Field
Included; ---- PO, - PO + Nonuniform Current Field, F/D = 0.4, 0 = [1800, 0°]

We now make some general comments on the patterns shown in Figures 3 through 10. Referring to
the dipole-feed antenna patterns of Figures 3 a, b, the effect of the nonuniform current field in the E-
and H-planes is masked by the primary dipole-feed pattern. In the 4) = 450 plane (Figure 3c), however,
the primary dipole-feed cross-polar field is close to zero for 0 close to 1800, and the effect of the
nonuniform current field is clearly seen, resulting in a raising of the nulls. In contrast, for the Huygens-
feed antenna, both the co- and cross-polar primary feed fields are close to zero near the forward
direction and, referring to Figures 7 a, b, c, the effect of the nonuniform current field may be seen in
the E- and H-planes as well as in the cross-polar field pattern for 4) = 450. The effect is most striking in
the cross-polar pattern where the nonuniform current field corrects the PO plus feed sidelobe levels
upwards by as much as 6 dB.

Turning next to the pattern plot for the full range of 0, it is seen from Figures 5 a, b and 9 a, b that
the back lobes of the E- and H-plane patterns for both the dipole-feed and Huygens-feed antennas are
strongly affected by the nonuniform current field. In the E-plane, the nonuniform current field raises the
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back lobes, while in the H-plane the back lobes are lowered from the PO plus feed levels. In contrast,
referring to Figures 5c and 9c, the back lobes of the cross-polar PO plus feed patterns are changed very
little by adding the nonuniform oirrent field.

In the next set of figures, we show the results of calculations in which the primary feed field is not
added to the secondary reflector field. These patterns are of more practical interest near the forward
direction, especially those for the dipole-feed antenna, since realistic feeds are highly directive and have
negligibly small radiation in the forward reflector region. Figures 12 a, b, c show, respectively, the
dipole-feed antenna amplitude pattern for 0 fLom 1800 to 1550 in the E- and H-plane, and the cross-polar
amplitude pattern in the 4) = 450 plane. Figures 13 a, b, c show the corresponding phase patterns.
Figures 14 a, b, c and 15 a, b, c show the same dipole-feed antenna amolitude and phase patterns for
the full range of 0. Figures 16 a, b, c through 19 a, b, c show the corresponding amplitude and phase
patterns of the Huygens-feed antenna.

m 0
"tJ $1¢nTD

_3-.. . PO

-30-

-40-

0 5 10 12 20 25

Theta/Degrees

Cross Polar

Figure 11. 4) = 450 Cross-Polar Amplitude Pattern of 20k Huygens-Feed Paraboloid Antenna With Primary Field
Included; - Spherical Near-Field GTD, - - - - Moment Method, - .... PO. F/D = 0.4, (After
Viskum and Bach 20)
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Figure 12a. E-Plane Amplitude Patt 'ern of 20X Dipole-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, - PO + Nonuniform Current Field, PA) = 0.4, 0 = [180', 15501
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Figure 12b. H-Plane Amplitude Pattern of 20k Dipole-Feed Paraboloid Antenna, Primary Field Not Includ1ed;
- - -- PO, - P0 + Nonuniform Current Field, F/D = 0.4, 0 = (1800, 1550]
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Figure 12c. 4)=450 Cross-Polar Amplitude Pattern of 20k Dipole-Feed Paraboloid Antenna, Primary Field Not
Included; - - - - PO, -P0 + Nonuniform Current ield, F/D = 0.4, 0 = [18O*, 1550]
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Figure 13a. E.Plane Phase Pattern of 20k Dipole-Feed Paraboloid Antenna, Primary Field Not included;
---- PO, - P0 + Nonuniform Current Field, F/i)= 0.4, 0 1 1800, 1550]

45



180.0

135. I

90.1I

45.1

-446



180.

135.

45.II

C21
0.

-90.0-

-135.

-8 0- 17t.6 176.6 160.0 155'I

THETA (DEGREES)

Figure 13c. =450 Cross-Polar Phase Pattern of 20A Dipole-Feed Paraboloid Antenna, Primary Field Not

Included; - - -- PO, P0 + Nonuniform Current Field, F/D = 0.4, 0 = 11800, 15501
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Figure 14a. E-Plane Amplitude Pattern of 20X Dipole-Feed Faraboloid Antenna, Primary Field Not Included;
- - -- PO, - P0 + Nonuniform Current Field, F/D = 0.4, e = [1800, 0']
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Figure 14b. H-Plane Amplitude Pattern of 20k Dipole-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, - P0 + Nonuniform Current Field, F/D = 0.4, 0 = [1800, 0*1
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Figure 14c. 4 450 Cross-Polar Amplitude Pattern of 20k Dipole-Feed Paraboloid Antenna, Primary Field Not
Included; - - - - PO, -P0 + Nonuniform Current Field, F/D = 0.4, 0 = 11800, 001
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Figure 15a. E-Plane Phase Pattern of 20X Dipole-Feed Paraboloid Antenna, Primary Field Not Included;

- - - - PO, - P0 + Nonuniform Current Field, F/D = 0.4, 0 = [1800, 00]
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Figure 15b. H-Plane Phase Pattern of 20X Dipole-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, - P0 + Nonuniform Current Field, F/D = 0.4, 6 = [1800, 001
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Figure 15c. 4) = 450 Cross-Polar Phase Pattern of 20X Dipole-Feed Paraboloid Antenna, Primary Field Not

Included; - - - - PO, -P0 + Nonuniform Current Field, F/D = 0.4, 0 = 1800, 0*1
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Figure 16a. E-Plane Amplitude Pattern of 20k Huygens-Feed Paraboloid Antenna, Primary Field Not included;
- - -- PO, - PO + Nonuniform Current Field, F/D = 0.4, 0 = [1800, 15501
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Figure 16b. H-Plane Amplitude Pattern of 20K Huygens-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, - P0 + Nonuniform Current Field, F/D =0.4, 0 =[1800, 1550]
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Figure 16c. 4)=450 Cross-Polar Amplitude Pattern of 20k Huygens-Feed Paraboloid Antenna, Primary Field
Not Included; - - -- PO, - PO + Nonuniform Current Field, F/D = 0.4, 0 = [1800, 15501
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Figure 17a. E-Plane Phase Pattern of 20k Huygens-Feed Paraboloid Antenna, Primary Field Not Included;

---- PO, - PO + Nonuniform Current Field, F/D = 0.4, 0 = [180', 1550]
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Figure 1 7b. H-Plane Phase Pattern of 20k Huygens-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, - PO + Nonuniform Current Field, F/D =0.4, 0 = [1800. 155*1
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Figure 17c. 4~450 Cross-Polar Phase Pattern of 20X Huygens-Feed Paraboloid Antenna, Primary Field Not
Included; - - -- PO, - P0 + Nonuniform Current Field, F/D =0.4, 0 = [1800, 1550]
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Figure 18a. E-Plane Amplitude Pattern of 20X Huygens-Feed Paraboloid Antenna, Primary Field Not Included;

---- PO, - PO + Nonuniform Current Field, F/D = 0.4, 0 = 11800, 00]

60



0.0-

-10.

-20.

M
9-30.0-

-40.

-60.5. Ij0i
i60135.0 90'.6 45.0 o .... o '

THETA (DEGREES)

Figure 18b. H-Plane Amplitude Pattern of 20X Huygens-Feed Paraboloid Antenna, Primary Field Not included;
- - - - PO, - P0 + Nonuniform Current Field, F/D = 0.4, 0 = [1800, 00]

61



0.0-

-10.0-

-20. -

C,-30

-40. -

-50.

-60.0-
is .0 13.69. 45.0 0.0

THETA (DEGREES)

Figure 18c. 4=45' Cross-Polar Amplitude Pattern of 20X Huygens-Feed Paraboloid Antenna, Primary Field
Not Included; - - - -PO, - P0 + Nonuniform Current Field, F/D = 0.4, 0 = 180', 0-1
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Figure 19a. E-Plane Phase Pattern of 20k Huygens-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, - P0 + Nonuniform Current Field, F/D = 0.4, 9 = [18O*, 001
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Figure 19b. H-Plane Phase Pattern of 20k Huygens-Feed Paraboloid Antenna, Primary Field Not Included;
- - - - PO, -P0 + Nonuniform Current Field, F/D = 0.4, 0 = 1800, 001
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Figure 19c. 4) 450 Cross-Polar Phase Pattern of 20X Huygens-Feed Paraboloid Antenna, Primary Field Not
Included; - - - - PO, - PO + Nonuniform Current Field, F/D = 0.4, 0 = [1800, O]

Comparing Figures 12 a, b showing the dipole-feed antenna E- and H-plane amplitude patterns

without the primary feed field, with Figures 3 a, b showing the patterns With the primary field, we see

that, once the masking effect of the primary field is removed, the effect of the nonuniform current field
is principally to raise the PO null depths. This is the same effect that we have already noted above in

discussing Figures 7 a, b for the Huygens-feed antenna patterns where the inclusion of the primary
Huygens-feed field does little since it is close to zero in the forward reflector direction. The cross-polar

patterns without the primary field dipole field shown in Figure 12c are very close to the corresponding
patterns with the feed field shown in Figure 3c since, as noted above, the primary cross-polar dipole

feed field is close to zero in directions close to the mainbeam of the reflector. The Huygens-feed

antenna patterns without the primary field shown in Figures 16 a, b, c are all, as expected, quite close
to the corresponding patterns shown in Figures 7 a, b, c with the primary field included.
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Turning to the dipole-feed reflector patterns without the primary field for the full range of 9 shown
in Figures 14 a, b, c, we note that in the back directions (that is, 0 < 600), the inclusion of the
nonuniform current field has very little effect on the PO pattern. This is explained by the fact that the
PO field in back of the reflector is very close to being equal and opposite to the primary feed field and
so, in the absence of the primary field, masks the effect of the nonuniform current field. In contrast, the
effect of the nonuniform current field in the back directions is seen much more strongly in Figures 5 a,
b since in these patterns the PO field is largely cancelled by the primary field. A very similar effect is
noted for the Huygens-feed reflector patterns without the primary field shown in Figures 18 a, b as
compared with the patterns with the primary field shown in Figures 9 a, b. The mid-portion (1300-600)
of the E-plane and the cross-polar patterns of both the dipole- and Huygens-feed antennas is strongly
affected by the nonuniform current field.

3.2 Comparison With Nonuniform Fields Obtained by Asymptotic Evaluation of the Diffraction
Integrals

In the previous section, we enhanced the accuracy of the PO far fields of a 20X diameter, 8X
focal-length reflector by adding the far fields of the nonuniform current near the rim of the reflector.
These far fields radiated by the nonuniform current were obtained by integrating numerically the
incremental diffraction coefficients in Eq. (47) and Eq. (48), which were derived assuming the nonuni-
form currents near the rim of the thin metal reflector are equal locally to those of a half plane tangent
to the reflector at the rim.

Alternatively, we can evaluate the integrals in Eq. (47) and Eq. (48) asymptotically by the method of

stationary phase to obtain closed-form approximate expressions for far fields radiated by the nonuniform
current. Since the rim of the reflector is a smooth circular edge many wavelengths in diameter, the method

of stationary phase should produce a very good approximation to the integrals except near the forward and

back directions of the reflector, that is, near the caustics of the far-field rays emanating from the rim of the

reflector.

Specifically, the two points of stationary phase are simply the two intersections of the rim of the
reflector with the plane formed by the far-field direction and the axis of the reflector. The contribution
from each of these two stationary points of diffraction can be found from the equations in Section 6.2 of
Kouyoumjian 2 l when the GTD diffraction coefficients in Eq. 6.32 of Kouyoumjian are replaced by the

nonuniform (PTD) diffraction coefficients for the half plane,'

D 2enu/4  sin 2.__o0TMs O0_ (52a)
kIcos +sin 2

ilT/4Cos±nu 2e i'r/4  -OS2TEsign('rr - O) Icos - +sin (52b)
2 2

Eq. (52a) and Eq. (52b) can also be ascertained by comparing Ds and Dh in Eq. 6.32 of Kouyoumjian
with our Eqs. (3,8) and (5,9), respectively, for 0 = 00 = ir/2. Substitution of the 2 - D nonuniform

diffraction coefficients Eq. (52) into Eq. 6.30 of Kouyoumjian for the two points of stationary phase on the
rim of the reflector shown in Figure 20, yields the following asymptotic approximations for the E- and
H-plane fields radiated by the nonuniform current:
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e-hDcos(e-0')A sin ' cos ie - irD cos(e + O')A sin e Cos 02

E' (Z) DX eZO' 2 + 2 (e: + ri \++0(53)
in 0(sisink- - 6+sin1 sin '+O' 2(3+sin)

22 2 2

(E-plane)

EDnu() = X ' ei(k ' /4)  .'+' [e-inDcos(O-O') sine' ieITLJCOs(8+O')Asin(
' Esi : C +) 2rrR cos 2 / ' , 02 (54)sin(W-+ + sin- sin (" 0+ + sin -

22 2 2

(H-plane)

where all the parameters in Eq. (53) and Eq. (54) have been given previously except for the fixed angle

that the tangent plane at the rim makes with the z-axis,

0'

01 and 02 which are given in terms of 0 as

0 = { 21- (0 + 3'), < 0 < 2Tr - Y

4,,r - (0 + '), 2,Tr - 13' < 0 < 24J

02 =1 - (0 -, 0< 0 < 'r,

and HI, and E4,4 , the incident magnetic and electric fields at 4' = 0 and rr/2, respectively, of the electric

dipole or Huygens feed illuminating the rim of the reflector.

Figures 21a and 21b compare the E-plane amplitude and phase patterns (radiated by the nonuniform

current) computed from the asymptotic expression, Eq. (53), (dashed line) and from the numerical

integration of Eq. (47) (solid line) for the dipole fed reflector 20X in diameter with F/D equal to 0.4.

Figures 22a and 22b compare the nonuniform H-plane patterns for the same antenna computed from

Eq. (48) and Eq. (54). As expected, the agreement is excellent except in the important caustic regions

around the forward and back directions where the asymptotic expressions diverge to infinity. The apparent

discrepancy in the E-plane amplitude pattern (Figure 21a) near 0 = 550 is misleading. It is caused by the

discontinuity in the diffraction coefficients along the face of the half-plane when the incident plane wave is

tran.verse Phcric [see En. (52h',. This discontinuity appears as a large phase jump (- 180) in the

asymptotic field Eq. (53), yet as a small amplitude jump. The fields computed from the numerical investiga

tion ih Eq. (47), however, are continuous, so that the 1800 phase jump near 550 becomes a continuously yet

rapidly varying field that goes through a null as shown by the solid curve of Figure 21a. Fortunately, the
effect of the fields of either the solid or lashed curves of Figures 21a and 21b near 550 on the total field of

the reflector are negligible compared to the PO fields near 550.
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Figure 20. Geometry for Stationary Phase Evaluation of the Nonuniform Current Field
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Figure 21a. E-Plane Amplitude Pattern of Nonuniform Fields of 20X Dipole-Feed Paraboloid Antenna;
- - -- Asymptotic, Eq. 53, - Numerical Integration, Eq. 47: F/D = 0.4, 8 [1800, 00]
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Figure 21b. E-Plane Phase Pattern of Nonuniform Fields of 20X Dipole-Feed Paraboloid Antenna;
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Figure 22a. H-Plane Amplitude Pattern of Nonuniform Fields of 20X Dipole-Feed Paraboloid Antenna;

- - - - Asymptotic, Eq. 54, - Numerical Integration, Eq. 48: F/D = 0.4, 0 = [180, 0-1
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Figure 22b. H-Plane Phase Pattern of Nonuniform Fields of 20X Dipole-Feed Paraboloid Antenna;

- -- -Asymptotic, Eq. 54, - Numerical Integration, Eq. 48: F/I) = 0.4, 0 = 180', 00]
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